Feature Selection Using Genetic Algorithm with Mutual Information
نویسنده
چکیده
Feature selection is the problem of selecting a subset of features without reducing the accuracy of representing the original set of features. It is the most important step that affects the performance of a pattern recognition system. In this paper, genetic algorithm (GA) is used to implement a feature selection in filter based method, and the mutual information is served as a fitness function of GA and k-NN is used to evaluate the accuracy of the selected feature. The proposed feature selection method is applied to the features extracted from the Lung CT scan images. Experimental results shows that proposed feature selection method simplifies features effectively and obtains a higher classification accuracy compared to the unreduced dataset classification accuracy.
منابع مشابه
Feature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine
Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods. In filter methods, features subsets are selected due to some measu...
متن کاملFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملFeature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets
Objective(s): This study addresses feature selection for breast cancer diagnosis. The present process uses a wrapper approach using GA-based on feature selection and PS-classifier. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer datasets. Materials and Methods: To evaluate effectiveness of proposed feature selection method, we ...
متن کاملOptimal Feature Extraction for Discriminating Raman Spectra of Different Skin Samples using Statistical Methods and Genetic Algorithm
Introduction: Raman spectroscopy, that is a spectroscopic technique based on inelastic scattering of monochromatic light, can provide valuable information about molecular vibrations, so using this technique we can study molecular changes in a sample. Material and Methods: In this research, 153 Raman spectra obtained from normal and dried skin samples. Baseline and electrical noise were eliminat...
متن کاملA Hybrid Feature Selection based on Mutual Information and Genetic Algorithm
Feature selection aims to choose an optimal subset of features that are necessary and sufficient to improve the generalization performance and the running efficiency of the learning algorithm. To get the optimal subset in the feature selection process, a hybrid feature selection based on mutual information and genetic algorithm is proposed in this paper. In order to make full use of the advanta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014